【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数;总和——较小的数=较大的数;较小的数×几倍=较大的数
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1. 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解:杏树有多少棵?
248÷(3+1)=62(棵)
桃树有多少棵?
62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2. 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解:西库存粮数:
480÷(1.4+1)=200(吨)
东库存粮数:
480——200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3. 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解:每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28——24)辆。
把几天后甲站车辆数当作1倍量,则乙站车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么
几天后甲站车辆数减为:
(52+32)÷(2+1)=28(辆)
所求天数为:
(52——28)÷(28——24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4. 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解:乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以乙数加上4就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4——6)就相当于(1+2+3)倍。那么,
甲数=(170+4——6)÷(1+2+3)=28
乙数=28×2——4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
还没有人评论哦,赶紧抢一个沙发吧!